СТАТИСТИЧЕСКАЯ ОЦЕНКА ВЛИЯНИЯ МОДИФИЦИРУЮЩИХ ФАКТОРОВ НА ВОЗНИКНОВЕНИЕ ВСПЫШЕК МАССОВОГО РАЗМНОЖЕНИЯ ЛЕСНЫХ НАСЕКОМЫХ

© М.К. Метелёва, В.Г. Суховольский

УДК 634.0.4

ГОУ ВПО «Сибирский государственный технологический университет», г.Красноярск, Россия

Изучено влияние погодных условий на развитие вспышек лесных насекомых. Введены понятия необходимых и достаточных условий воздействия модифицирующих факторов. На примере влияния погодных характеристик на рост численности популяции сосновой пяденицы показано, что для развития вспышки массового размножения необходимо наличие благоприятных погодных условий, но их наличие может оказаться недостаточным, вследствие отрицательного влияния других (регулирующих) факторов.

The weather impact on population dynamics of forest insects was studied. The definitions of necessary and sufficient conditions of modification factors influence were developed. On example of weather impact on Bupalus piniarius L. population dynamics it was shown that favorable weather conditions are necessary for the population outbreak development though their influence may appear not sufficient due to the influence of regulation factors.

Введение

Массовые размножения вредных лесных насекомых являются одним из основных факторов повреждений и гибели деревьев и древостоев. Знание факторов, влияющих на колебания численности вредителя, совершенно необходимо для предсказания вспышек массового размножения и выработки методов борьбы с ними.

Существуют различные теории, объясняющие циклические колебания численности. Так, большая группа (Thompson, 1939. 1956; исследователей 1961, 1965; Nicholson, 1958; Holling, Burnett, 1964; и др.; цит. по Бенкевич, 1984) объясняет изменения численности исключительно регулирующими факторами (зависящими от плотности популяции), такими,

как паразиты и хищники данного вида. Ряд специалистов (Положенцев, Ханисламов, 1962; Гримальский, 1964; Радкевич, Роменко, 1979) считает, что колебания численности насекомых возникают в связи с изменением физиологического состояния и свойств растений, что определяет качество фитофагов. Bo многих работах, анализирующих повторяющиеся вспышки массового размножения насекомых, авторы приходят к выводу, что основным фактором, запускающим вспышки численности, является модифицирующий фактор, солнечная активность (Чижевский, 1973, Ханисламов и др., 1958, 1962; Щербиновский, Вержуцкий, 1981; Бенкевич, Амшеев, 1992).

При анализе влияния модифицирующих факторов большое значение придают также метеорологическим показателям - температуре влажности (Егоров, 1960: Лямцев. Исаев, 2000). Несомненной считается размножений массовых фитофагов предшествующими засушливыми периодами (Mattson, Haack, 1987). Засухи предшествуют вспышкам массового размножения насекомых в лесах как с резко континентальным, так и с тропическим климатом (Ильинский, Воронцов, 1963; Кондаков, 1974; Рафес, 1978; Wallner, 1987). Так, во второй половине 1970-х и начале 1980-х годов в европейских странах были отмечены массовые размножения многих видов лесных насекомых, что объясняют воздействием «засухи века», имевшей место в 1976 г., и другими засушливыми сезонами после 1971 г. (Bogenschuts, 1986; Speight, 1986). Считается, ЧТО нарастание численности сибирского шелкопряда сопряжено с засухами, продолжительность которых составляет менее пяти лекал. Потенциальная угроза массового размножения шелкопряда создается засушливых условиях июня-июля течение 2-3 лет (Кондаков, 1974, 2002). Вместе с тем детальный анализ влияния погодных модифицирующих факторов на развитие вспышек массового размножения, основанный хиннот статистических оценках критериях, в настоящее время отсутствует. В связи с этим целью настоящей работы была разработка статистических критериев оценки степени влияния погодных факторов на развитие вспышек массового размножения.

Условия необходимости и достаточности воздействия модифицирующих факторов на развитие вспышек массового размножения насекомых

Колебания численности отдельных видов лесных насекомых следует рассматривать как результат влияния целого комплекса взаимодействующих факторов. В связи с этим популяции cдискретным типом размножения можно записать следующее уравнение:

$$x_{i+1} = k_i(x, y, z_1, ..., z_n)x_i = k_c(x, y) \cdot k_m(z_1, ..., z_n) \cdot x_i$$
(1)

где x_i и x_{i+1} - плотности популяции насекомых в течение двух смежных лет; y - плотность популяций паразитов и хищников; $k_i(x,\ y,\ z_{\scriptscriptstyle 1},\ ...,\ z_{\scriptscriptstyle n})$ - коэффициент размножения популяции, $z_{\scriptscriptstyle 1},\ ...,\ z_{\scriptscriptstyle n}$ - значения модифицирующих факторов в i-ый момент времени.

В (1) предполагается, что коэффициент размножения представить онжом произведение парциальных коэффициентов регулирующего коэффициента размножения $k_{c}(x, y)$ и модифицирующего коэффициента размножения $k_m(z_1, ..., z_n)$. В стабильноразреженном состоянии, когда изучаемый вид насекомых и его паразиты и хищники, состоянии динамического В находятся равновесия, плотность популяции изучаемого вида колеблется вблизи точки x_1 , а величина регулирующего коэффициента размножения близка к 1 (Исаев и др., 2001). На стадии подъема численности регулирующего коэффициента размножения могут значительно возрасти за счет «отрыва» популяции от ее врагов; на стадии кризиса регулирующего коэффициента значения размножения уменьшиться В связи увеличением пресса воздействия паразитов и хищников на популяцию вредителей (Исаев и др., 2001). Величина же модифицирующего коэффициента размножения, не зависящая от плотности популяции, может измениться на любой фазе градационного цикла, способствуя как росту численности популяции, так и ее спаду.

Ha стабильно-разреженного фазе состояния популяции ее рост может быть обеспечен в основном за счет увеличения значения модифицирующего коэффициента размножения, так как случаи, когда стабильно разреженном состоянии интенсивность воздействия паразитов хищников резко падает (а, значит, растет регулирующий коэффициент размножения) редки. Значительный же рост численности популяции будет иметь место, если значения модифицирующего коэффициента размножения остаются большими единицы в течение г лет, если при этом регулирующий коэффициент размножения все это время близким к единице остается или даже возрастает. несколько В стабильноразреженном состоянии плотность популяции сосновой пяденицы составляет величины порядка сотых (и даже тысячных!) долей куколки на одну учетную единицу (лесную площадью \mathbf{M}^2). На фазе подстилку 1 максимума вспышки плотность популяции вредителя достигает двухсот куколок учетную единицу. Таким образом, переходе OT стабильно-разреженного состояния к вспышке массового размножения плотность популяции вредителя возрасти на четыре порядка, то есть:

$$\frac{x_{\text{max}}}{x_{\text{min}}} = r^{\alpha} \approx 10^4 \tag{1}$$

В этом выражении а есть число поколений, последовательном росте численности которых можно достичь плотности популяции, характерной ДЛЯ максимума вспышки. Коэффициент размножения может превышать величину произведения полового индекса на плодовитость самок: предполагается, что все самки в популяции отложат максимально возможное число яиц и изо всех яиц выйдут гусеницы. У сосновой пяденицы половой индекс на всех фазах градации близок к 1/2, плодовитость самок достигает 200 яиц на особь, то есть $r \le 100$. Тогда из (1) $\alpha \approx 3$. Таким образом, для достижения фазы максимума вспышки сосновой пяденице необходимо не менее трех лет. все ЭТИ годы воздействие модифицирующих факторов должно чтобы обеспечить максимальный коэффициент размножения популяции.

Напротив, если величины регулирующего размножения коэффициента оказываются существенно меньшими 1, что возможно на фазах кризиса и депрессии градационного популяции, увеличение цикла TO модифицирующего коэффициента размножения не приведет к росту плотности Таким образом, популяции. возможные воздействия модифицирующих факторов на динамику численности популяции определяются не только реализацией благоприятных условий среды, но и текущим состоянием популяции.

Отсюда следует, что реализация состояния благоприятными значениями среды модифицирующих факторов не является необходимым достаточным условием возникновения вспышек массового размножения и необходима методика оценки воздействия модифицирующих факторов, учитывающих текущее состояние популяции.

статистической оценки влияния модифицирующих факторов на развитие вспышек массового размножения лесных насекомых в настоящей работе использовалась методология, связанная с расчетом условных вероятностей развития вспышек. В данном случае рассчитывается условная вероятность $P_{out}(M > M_0 / OUT)$ реализации вспышки массового размножения в случае, когда в годы, предшествующие вспышке, превышен порог по выбранному модифицирующему показателю.

Для оценки условной вероятности запишем следующее выражение (формулу Байеса):

$$P_{out}(M > M_0 / OUT) = \frac{P(OUT, M > M_0)}{P(OUT)},$$
 (2)

где - $P(OUT, M > M_0)$ - вероятность превышения порогового значения погодных показателей M_0 в годы, предшествующие ВМР; P(OUT) - вероятность ВМР за весь период времени.

Данным выражением определяется условие **необходимости** влияния модифицирующих факторов на рост численности популяции. Иными словами, перед каждой ВМР погодные показатели должны превышать пороговое значение: $P(M > M_0 / OUT) \rightarrow 1$.

Чтобы определить, следует ли ВМР за каждым превышением порогового значения погодных показателей, запишем следующее выражение:

$$P_{out}(OUT/M > M_0) = \frac{P(OUT, M > M_0)}{P(M > M_0)},$$
 (3)

где - $P(OUT, M > M_0)$ - вероятность превышения порогового значения погодных показателей M_0 в годы, предшествующие ВМР; $P(M > M_0)$ - вероятность превышения порогового значения погодных показателей M_0 за весь период времени исключая годы депрессии, что позволило не учитывать время, когда вспышка в принципе не могла произойти.

Данным выражением определяется условие достаточности влияния модифицирующих факторов на рост каждым численности популяции за превышением порогового показателя погоды должна следовать BMP: $P(OUT / M > M_0) \rightarrow 1$.

В случаях, когда вероятность выполнения данного условия оказывается небольшой, можно говорить о недостаточности влияния модифицирующих факторов, например, вследствие отрицательного влияния регулирующих факторов.

Анализ сопряженности погодных характеристик c развитием вспышек размножения массового сосновой пяденицы Исходя из вышеизложенной точки зрения, были проанализированы изменения условий территории погодных на Минусинских ленточных боров (юг Средней Сибири), где за период с 1950 по 1990 гг. произошло четыре вспышки массового сосновой размножения пяденицы Bupalus piniarius L. Известно, ЧТО критическим развитии этого вредителя периодом В является конец лета - начало осени, когда

заканчивается развитие личинок, они уходят в подстилку и окукливаются (Пальникова и др., 2002).

Анализ данных по температуре и осадкам, а также величин отношения количества осадков к температуре (гидротермический коэффициент ГТК), показал, что влияние погодных факторов на развитие вспышки численности нельзя назвать решающим (рисунок 1).

Как видно из рисунке 1, вероятность более высокой температуры в сентябре в годы, предшествующие ВМР немного больше, однако, эти различия незначительны. В таблице 1 приведены результаты статистического анализа различий погодных характеристик в

годы перед вспышкой массового размножения и в годы стабильного состояния популяции.

Полученные значения статистики Манна-Уитни не превышают установленных табличных значений критических показателей, так же как средние значения погодных показателей незадолго до вспышки значимо не отличаются от тех же средних в стабильном состоянии.

На основе выражений (2) и (3) можно сформулировать условия достаточности и необходимости воздействия модифицирующих факторов на развитие вспышек массового размножения насекомых.

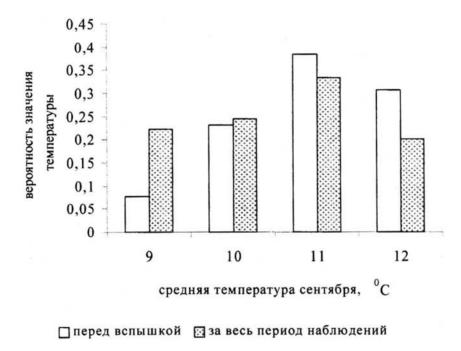


Рисунок 1 - Распределение температуры сентября в годы, предшествовавшие вспышкам массового размножения сосновой пяденицы

Таблица 1 - Статистический анализ различий погодных характеристик в годы перед вспышкой массового размножения и в годы стабильного состояния популяции

Статистические характеристики	Сентябрь				
	температура	осадки	ГТК		
Среднее значение перед вспышкой	10,4	36,6	1,01		
Среднее значение в стабильно- разреженном состоянии	9,3	36,4	1,03		
Статистика Манна-Уитни	186	144	142		
Табличное значение статистики Манна- Уитни	190	190	190		

Условие достаточности заключается в том, что за каждым превышением порогового значения погодного показателя следует вспышка массового размножения: $P(OUT / M > M_0) \rightarrow 1$. Условие необходимости состоит в том, что перед каждой вспышкой массового размножения погодный показатель превышает пороговое значение: $P(M > M_0 / OUT)$ \rightarrow 1, но вовсе не после каждого превышения порогового значения погодного показателя начинается вспышка массового размножения.

Байеса. Используя формулу были вычислены условные вероятности P(OUT) $M > M_{\scriptscriptstyle 0}$) и $P(M > M_{\scriptscriptstyle 0}$ / OUT). При этом анализировались погодные условия за три года до выявления в насаждении значительного увеличения численности популяции повреждения насаждении деревьев (фактически популяции это состояние соответствовало концу фазы подъема численности И начала фазы максимума численности). В качестве погодных характеристик, влияние которых на развитие вспышки массового размножения изучалось, были ВЗЯТЫ среднемесячные температура воздуха, количество осадков гидротермический коэффициента (ΓTK) отношение количества выпавших за месяц

осадков к среднемесячной температуре. Сухой и теплый период при этом характеризуется малым значением ГТК, холодный и влажный - большим значением ГТК.

Для расчета условных вероятностей по формулам (2) и (3) необходимо знать величины $P_{out}(OUT)$ - вероятности вспышки массового размножения; $P(M > M_0)$ критического вероятность превышения значения погодного показателя; P(OUT, M > $M_{\scriptscriptstyle 0}$) - вероятность того, что перед вспышкой массового размножения характеристики превышали погодные критические значения. Для расчета этих показателей использовались метеоданные и данные о вспышках массового размножения сосновой пяденицы в лесах Минусинской котловины за весь период исследований (1950 - 1990 гг.). В таблице 2 приведены результаты условных вероятностей, теризующих необходимость и достаточность погодных характеристик влияния вспышки массового реализацию размножения.

Таблица 2 - Расчет величин условных вероятностей возникновения вспышки массового размножения сосновой пяденицы в зависимости от погодных характеристик августа - сентября

Статистические показатели	Месяц						
	август			сентябрь			
	температура	осадки	ГТК	температура	осадки	ГТК	
среднее значение погодного показателя	16,90	59,00	1,02	10,00	40,40	1,04	
Вероятность вспышки P_{out} (OUT)	0,27	0,27	0,27	0,27	0,27	0,27	
Вероятность превышения критического значения в течение трех лет перед обнаружением вспышки $P(M > M_{_0})$	0,41	0,54	0,57	0,52	0,64	0,61	
$P(OUT, M > M_0)$	0,09	0,09	0,09	0,09	0,20	0,20	
Условие $P_{out}(OUT \ / \ M \ > \ M_0)$	0,33	0,33	0,33	0,33	0,75	0,75	
Условие достаточности $P_{out}(M > M_{_0} / OUT)$	0,22	0,17	0,16	0,17	0,32	0,33	

Как видно из таблицы 2, погодные условия, критические для развития вспышек массового размножения сосновой пяденицы,

действительно наблюдаются в сентябре. Условные вероятности, характеризующие и достаточность, и необходимость реализации

критических погодных условий в августе, не превышают 0,33. Для сентября вероятность условия необходимости выполнения превышения критических погодных условий вспышкой массового размножения перед существенно выше, вероятность выполнения достаточности условия превышения критических погодных условий перед вспышкой. Иными словами, для развития вспышки массового размножения необходимо наличие благоприятных погодных условий, но их наличие может оказаться нелостаточным. вследствие отрицательного влияния других (регулирующих) факторов.

Библиографический список

- 1. Амшеев, Р.М. Экологические основы вспышек массового размножения насекомых в Забайкалье // Экология, 1992. № 3. С.80-83.
- 2. Бенкевич, В.И. Массовые появления непарного шелкопряда в европейской части СССР. М.: Наука, 1984. 141 с.
- 3. Вержуцкий, Б.Н. Растительноядные насекомые в экосистемах Восточной Сибири (пилильщики и рогохвосты). Новосибирск: Наука, 1981. 299 с.
- 4. Воронцов, А.И. Биологические основы защиты леса. М.: Высшая школа, 1963. 324 с.
- 5. Гримальский, В.И. Устойчивость сосновых насаждений против хвоегрызущих вредителей. М.: Лесн. пром-сть, 1964. 152 с.
- 6. Егоров, Н.Н. Лесозащитные мероприятия в ленточных борах Алтайского края. Барнаул: Алтайское кн. изд-во, 1960.
- 7. Ильинский, А.И. Надзор за хвое- и листогрызущими вредителями в лесах и прогноз их массовых размножений. М. Л.: 1952. 142 с.
- 8. Популяционная динамика лесных насекомых / А.С. Исаев [и др.]. М.: Наука. 2001. 374 с.
- 9. Кондаков, Ю.П. Закономерности массового размножения сибирского шелкопряда // Экология популяций лесных животных Сибири. Новосибирск: Наука, 1974. С. 206-265.
- 10. Кондаков, Ю.П. Массовые размножения сибирского шелкопряда в лесах Красноярского края // Энтомологические исследования в Сибири. Вып. 2. Красноярск: $K\Phi P \ni O. 2002. C. 25 74.$
- 11. Влияние климата и погоды на динамику численности непарного шелкопряда в европейской России / Н.И. Лямцев [и др.] // Лесоведение, 2000. №1. С. 62-67.

- 12. Сосновая пяденица в лесах Сибири. Экология, динамика численности, влияние на насаждения. / Е.Н. Пальникова [и др.] Новосибирск: Наука, 2002. 254 с.
- 13. Положенцев, П.А., Ханисламов, М.Г. История и перспективы изучения зависимости градаций насекомых от физиологического состояния деревьев. Уфа: Ин-т биологии, 1962.
- 14. Радкевич, В.А., Роменко, Т.М. Продолжительность развития и динамика роста гусениц непарного шелкопряда на различных по физиологическому состоянию кормовых растениях. // Фауна и экология насекомых Белоруссии. Минск: Наука и техника. 1979.
- 15. Рафес, П.М. Биоценологическая теория динамики популяций растительноядных лесных насекомых // Математическое моделирование в экологии. М.: Наука, 1978. С. 34-50.
- 16. Массовые размножения непарного шелкопряда в Башкирии / М.Г. Ханисламов [и др.] // Исследования очагов вредителей леса в Башкирии. Уфа: Изд-во Башк. фил. АН СССР. 1958, вып. 1.
- 17. Условия формирования резерваций и нарастания численности непарного шелкопряда в Башкирии / М.Г. Ханисламов [и др.] // Исследования очагов вредителей леса Башкирии. Уфа: БФ АН СССР, 1962. вып. 2. С. 32-62.
- 18. Чижевский, А.Л. Земное эхо солнечных бурь. М.: Мысль, 1973. 350 с.
- 19. Щербиновский, Н.С. Циклическая активность Солнца и обусловленные ею ритмы массовых размножений организмов // Земля во Вселенной. М.: Мысль. 1964.
- 20. Bogenschutz, H. Deutsche Forstschutz-Literatur 1983: Insekten // Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz. 1986. 93 (5). S. 537-555
- 21. Mattson, W.J., Haack, R.A. The role of drought in outbreaks of plant-eating insects // Bio-Science. 1987. 37. № 2, P. 110-118.
- 22. Speight, M.R. Environmental influences on host plant susceptibility to insect attack // Insects and Plant Surface. London. 1986. P. 309-316.
- 23. Wallner, W.E. Factors affecting insect population dynamics: differences between outbreak and non-outbreak specias // Ann. Rev. Entomol. 1987. 32. P. 317-340.