УДК 630*165.51:633.877

МОРФОЛОГИЧЕСКАЯ ИЗМЕНЧИВОСТЬ ГЕНЕРАТИВНЫХ ОРГАНОВ ЛИСТВЕННИЦЫ СИБИРСКОЙ В ВОСТОЧНОЙ СИБИРИ И СЕВЕРО-ВОСТОЧНОЙ МОНГОЛИИ

А.П. Барченков¹, Л.И. Милютин¹, С. Жамъянсурен²

¹Институт леса им. В.Н. Сукачева СО РАН 660036 Красноярск, Академгородок, 50; e-mail: <u>institute@forest.akadem.ru</u>
² Институт ботаники АНМ 210361 Улан-Батор, ул. Жукова, 77 e-mail: <u>ibot@mongol.net</u>

Исследована морфологическая изменчивость количественных и качественных признаков шишек и семян лиственницы сибирской на территории Восточной Сибири и Северо-Восточной Монголии. Выявлены основные закономерности изменчивости этих признаков. Определены популяции сибирской лиственницы с высокой степенью изменчивости и наиболее перспективными для селекции и лесоразведения генотипами.

Ключевые слова: изменчивость, лиственница, генеративные органы

The morphological variability of *Larix sibirica* (Ledeb.) quantitative and qualitative features of generative organs has been investigated on Eastern Siberia and North-Eastern Mongolia territories. The main regularities of variability of these features have been obtained. The *Larix sibirica* (Ledeb) populations with high degree of variability and more perspective for selection and foresting genotypes have been defined.

Key words: variability, larch, generative organs

ВВЕДЕНИЕ

В настоящее время лиственница сибирская является одной из основных лесообразующих пород на территории Восточной Сибири и Монголии. В Восточной Сибири лиственница сибирская занимает всю юго-западную часть Прибайкалья и юг Бурятии. В Северо-Восточной Монголии лиственница сибирская произрастает на большей части гор Хэнтэя. Высокая экологическая пластичность и слабая репродуктивная изоляция вызывают значительную морфологическую изменчивость восточных популяций лиственницы сибирской. Кроме того, существенное влияние на изменчивость лиственницы сибирской в восточной части ее ареала оказывает непосредственная близость к границам распространения лиственницы Гмелина, что вызывает значительную миграцию генетического материала от этого вида в процессе интрогрессивной гибридизации. Изучение морфологии восточносибирских популяций сибирской лиственницы привело к выделению некоторых внутривидовых таксонов (var. lenensis, baicalensis, transbaicalensis) (Милютин, 1983), которые различаются по степени проявления гибридизационных процессов. Наибольшее количество гибридных форм встречается в популяциях var. baicalensis, которые непосредственно переходят в новый гибридный видовой таксон Larix czekanowskii Szaf.

Исследование гибридных популяции на границах ареалов является важным и перспективным направлением для изучения гетерозисных форм лиственницы, перспективных для заготовки семян и лесовосстоновления.

лесовосстоновления.

Работа выполнена при финансовой поддержке гранта

В данной работе проведен сравнительный анализ морфологической изменчивости генеративных органов лиственницы сибирской в северных и южных районах Восточной Сибири. Кроме того, для отражения более полной картины морфологического разнообразия в периферийных популяциях лиственницы сибирской проанализированы показатели вариации этих признаков в горах Монголии.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Объектом наших исследований были популяции лиственницы сибирской, произрастающие в Восточной Сибири и в северо-восточных районах Монголии на склонах гор Хэнтэя. Характеристики пробных площадей представлены в таблице 1. Изменчивость изучалась по таким признакам, как: длина и ширина шишек, число семенных чешуй в шишке, форма края семенной чешуи, опушенность семенных чешуй, масса 1000 семян и показатели их посевных качеств. Вариация количественных признаков определялась методами математической статистики и оценивалась по шкале С.А. Мамаева (1972).

Определялись показатели внугрипопуляционной изменчивости исследуемых количественных признаков, выражаемые коэффициентом вариации (Cv, %). Изменчивость качественных признаков устанавливалась с помощью определения процентных соотношений встречаемости признака в популяциях.

Из-за ограниченности экспериментального материала, связанной с неудовлетворительными урожаями семян в районе исследования за последние годы, в некоторых популяциях данные по

РФФИ № 11-04-00033

Таблица 1 - Характеристики пробных площадей

Место сбора материала	№ п/п	Географические координаты		_ Тип леса	Бонитет	
	• .=,	С. Ш.	В.Д.			
Ванавара	1	60°19′	102°15′	разнотравный	IV	
Чемдальск	2	59°38′	103°19′	ельник зеленомошный	V	
Усть-Кут	3	56°46′	105°45′	разнотравный	III	
Жигалово	4	54°48′	105°09′	осочково-лишайниковый	IV	
Косая степь	5	52°50′	106°06′	разнотравный	II	
Ольхон	6	53°12′	107°20′	лиственничная редина	IV	
Кяхта	7	50°20′	106°20′	кустарничковый	IV	
Джида	8	50°50′	105°57′	злаково-разнотравный	Π I	
Елбак	9	49°07′	106°48′	• •	IV	
Биндэр-Обо	10	48°27′	110°13′		IV	
Цэнхэр-Мандал	11	47°47′	109°03′	разнотравный	V	
Мунген-Морьт	12	48°20′	108°39′		IV	
Богдо-Ула	13	47°44′	106°58′		IV	

Примечание: п/п – пробная площадь.

качественным признакам семян не были получены

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Изменчивость морфометрических признаков шишек. Морфометрические признаки шишек лиственницы имеют важное значение для ее внутривидовой систематики и аналитической селекции, однако значительная изменчивость и полигенное наследование этих признаков усложняют их диагностику и классификацию. Кроме того, эти признаки значительно коррелируют между собой, по литературным данным (Путенихин и др., 2004) коэффициенты корреляции изменяются от 0,5 до 0,8, что делает еще более сложным их использование для внутривидовой диагностики. В нашей работе мы проанализировали вариацию морфометрических признаков шишек в пределах популяции и на межпопуляционном уровне и попытались наметить наиболее перспективные для аналитической селекции популяции с высоким уровнем вариации признаков.

Анализ полученных данных показал, что внутрипопуляционная изменчивость в равнинных популяциях Восточной Сибири проявляется в основном на низком и среднем уровнях, по шкале С.А. Мамаева (1972), при этом отмечаются некоторые тренды увеличения или уменьшения вариации в зависимости от экологических условий произраста-

ния. В наиболее пессимальных условиях индивидуальная изменчивость признаков несколько снижается. Например, низкая вариация метрических признаков шишек отмечена в остепненных изолированных лиственичниках на юге Бурятии (пробные площади $N \ge 7$, $N \ge 8$) (табл. 2).

Другая тенденция вариации отмечена в горных популяциях Монголии. По длине шишек и числу семенных чешуй в них уровень внутрипопуляционной изменчивости на склонах Восточного Хентэя увеличивается до повышенного значения (табл. 3). Наибольшая вариация выявлена в районе с. Цэнхэр-Мандал и заповедника Богдо-Ула на высотах 1560 и 1680 м над у.м. При этом прямой зависимости увеличения внутрипопуляционной изменчивости от изменения высоты над уровнем моря не установлено

При исследовании географической изменчивости этих признаков существенных закономерностей, связанных с изменением географической широты и высоты над уровнем моря, не выявлено. Межпопуляционные различия определяются в основном экологическими условиями произрастания. Низкие значения параметров шишек выявлены в северной популяции в верховье Подкаменной Тунгуски. Кроме того, деревья с мелкими шишками обнаружены в остепненном лиственничнике на острове Ольхон. Помимо пессимальных условий произрастания, по-видимому, более сильное влияние на изменчивость размеров шишек оказывает

Таблица 2 - Изменчивость размеров шишек

Место сбора материала		Длина шишек, г		Ширина шишек, г		Число чешуй в	
	№ п/п					шишке ((шт.)
	_	$X_{cp}\pm m_x$	Cv %	$X_{cp}\pm m_x$	Cv %	$X_{cp}\pm m_x$	Cv %
Ванавара	1	25,7±0,6	12,3	25,2±0,5	10,6	26,2±0,6	13,2
Чемдальск	2	$23,3\pm0,4$	7,5	$18,3\pm0,4$	11,0	$23,6\pm0,5$	9,1
Усть-Кут	3	$25,5\pm0,7$	15,3	$24,1\pm0,7$	15,4	$23,8\pm0,8$	18,8
Жигалово	4	$27,9\pm0,6$	12,3	$23,4\pm0,6$	12,8	$28,4\pm0,7$	12,8
Косая степь	5	$26,7\pm0,6$	12,1	$25,8\pm0,5$	10,6	$28,0\pm0,7$	13,1
Ольхон	6	$23,8\pm0,5$	10,8	$20,3\pm0,5$	13,9	$24,5\pm0,7$	16,7
Кяхта	7	$26,5\pm0,5$	10,3	$25,9\pm0,4$	8,2	$27,2\pm0,6$	11,0
Джида	8	$25,5\pm0,6$	12,6	$22,3\pm0,5$	10,8	$31,4\pm0,7$	11,5

Примечание: X_{cp} – среднее значение признака на пробной площади; m_x – ошибка среднего; Cv – коэффициент вариации признака; π/π – пробная площадь.

возможная гибридизация с лиственницей Гмелина или с гибридным комплексом (лиственницей Чекановского). В южных степных районах Бурятии (пробная площадь № 8) (табл. 2) и в горах Восточного Хэнтэя в Монголии (табл. 3) выявлены

популяции с многочешуйными шишками. Число семенных чешуй в шишке у деревьев этих популяций значительно превышает показатели данного признака в других насаждениях, как в Восточной, так и в Западной Сибири.

Таблица 3 - Изменчивость морфометрических признаков шишек в горных популяциях Монголии

Место сбора	Высота над	Длина шишек	<u> </u>	Число чешуй в шишке		
материала	уровнем моря	$X_{cp}\pm m_x$	Cv %	$X_{cp}\pm m_x$	Cv %	
Елбак	1300	25,9±0,3	19,7	33,7±0,3	18,4	
Биндэр-Обо	1400	$26,9\pm0,3$	10,3	$32,3\pm0,3$	19,7	
Цэнхэр-Мандал	1560	24,5±0,4	22,3	$29,4\pm0,4$	24,7	
Мунген-Морьт	1630	$28,2\pm0,2$	13,4	$36,7\pm0,2$	20,6	
Богдо-Ула	1687	21,4±1,3	20,6	$28,2\pm1,1$	24,3	

Примечание: X_{cp} — среднее значение признака на пробной площади; m_x — ошибка среднего; Cv — коэффициент вариации признака.

Шишки с большим числом чешуй были также обнаружены на единичных деревьях в остепненных злаково - разнотравных лиственичниках Хакасии.

Изменчивость формы края семенной чешуи. В.Н.Сукачев (1924) считал этот признак одним из ведуших в диагностике видов лиственницы и подчеркиваел его значение в познании филогении рода

Larix. В дендрологических описаниях видов и форм лиственницы по очертанию верхнего края выделяют чешуи округлые, прямосрезанные, выемчатые и реже зазубренные. В исследованных популяциях лиственницы сибирской отмечено абсолютное преобладание деревьев с округлой формой края семенной чешуи (от 70 до 100 %) (табл. 4).

Таблица 4 - Встречаемость деревьев с различной формой края семенной чешуи, %

Место сбора материала	№ п/п	Форма края семенной чешуи				
	-	округлая	прямая	выемчатая		
Ванавара	1	76	20	4		
Чемдальск	2	95	5	-		
Усть-Кут	3	76,7	13,3	10		
Жигалово	4	86,7	13,3			
Косая степь	5	70	30			
Ольхон	6	90	6,7	3,3		
Кяхта	7	56	20	24		
Джида	8	100	-	-		
Елбак	9	100				
Биндэр-Обо	10	97	2	1		
Цэнхэ р- Мандал	11	100	-	-		
Мунген-Морьт	12	100	-	-		
Богдо-Ула	13	100	-	-		

Примечание: п/п – пробная площадь.

В ряде популяций выявлено значительное присутствие переходных форм по этому признаку. Например, на юго-западном побережье Байкала (пробная площадь №5) (табл. 4) обнаружено до 30 % особей с прямой формой края семенной чешуи. В южных районах Бурятии (пробная площадь №7) встречаемость особей с прямой и выемчатой формой края семенной чешуи составила 20 и 24 % соответственно. Эти показатели значительно превышают встречаемость этого признака, отмеченную нами ранее (Барченков, 2010) в популяциях Средней Сибири. Результаты наших исследований и обобщение литературных данных (Дылис, 1947; 1961, 1981; Круклис, Милютин, 1977) указывают на то, что изменчивость этого признака в Восточной Сибири определяется преимущественно гибридизационными процессами лиственницы сибирской с лиственницей Гмелина. По данным Л.И. Милютина (1983), в гибридных популяциях до 48 % особей

имеют прямую и выемчатую форму края семенной чешуи.

Изменчивость опушенности семенных чешуй. Опушенность семенных чешуй лиственницы - важный признак для диагностирования видов лиственницы. Из произрастающих на территории Сибири видов лиственница сибирская имеет наиболее опушенные чешуи. При этом, данный вид лиственницы является и наиболее полиморфным по этому признаку. Все многообразие опушенности чешуй шишек объединено в несколько групп (табл. 5): очень сильное опушение - чешуи покрыты густым рыжим «войлочным» опушением; сильное – чешуи покрывает хорошо заметное рыжее опушение; среднее – чешуи от основания примерно до половины покрыты рыжеватыми волосками; слабое рыжеватые волоски заметны лишь у основания чешуй; слабое белесое опушение - у основания

Таблица 5 - Встречаемость деревьев с различной опушенностью семенных чешуй

Место сбора	№ п/п	Опушенность семенных чешуй					
материала	_	очень сильное	сильное	среднее	слабое	слабое белесое	
		опушение	опушение	опушение	опушение	опушение	
Ванавара	1	51,6	9,7	19,4	19,4	-	
Чемдальск	2	46,2	23,1	23,1	7,7	-	
Усть-Кут	3	-	32,1	21,4	39,3	7,1	
Жигалово	4	86,7	-	10	3,3	-	
Ольхон	6	100	-	-	-	-	
Елбак	9	-	91,6	8,4	-	-	
Биндэр-Обо	10	-	72,0	21,0	7,0	-	
Мунген-Морьт	12	-	65,0	33,0	2,0	-	
Богдо-Ула	13	-	86,5	13,5	-	-	

Примечание: п/п – пробная площадь.

чешуй видны редкие белесые волоски (по Л.И. Милютину, 1983). Практически во всех исследованных нами популяциях лиственницы преобладают деревья с очень сильным (51,6 – 100 %) и сильным (9,7 91,6 %) опушением семенных чешуй (табл. 5). При этом отмечено увеличение встречаемости особей со слабоопушенными семенными чешуями в окрестностях поселка Усть-Кут в северных районах Прибайкалья, а также в районе эвенкийского поселка Ванавара. В этих популяциях наиболее вероятно влияние гибридизации с лиственницей Гмелина, что оказывает существенное влияние на изменчивость этого признака. В горных районах Монголии выявлено обсалютное преобладание деревьев с сильно и средне-опушенными чешуями и лишь единично встречаются шишки со слабым опушением

Изменчивость показателей качества семян.

Семена являются важным средством производства в лесном хозяйстве. Изучение их свойств в пределах ареала вида является необходимым элементом работы по выявлению семенных ресурсов. Основными показателями качества семян являются: масса 1000 семян, их полнозернистость, всхожесть и энергия прорастания.

Масса 1000 семян является одним из основных признаков при изучении изменчивости и систематики лиственницы. Лиственница сибирская формирует наиболее крупные и тяжелые семена среди сибирских видов лиственницы. Причем этот признак является достаточно изменчивым, и факторы, влияющие на его вариацию, весьма разнообразны. Имеются многочисленные материалы (Кульмина, Черепнин, 1973; Ирошников и др., 1974; Третьякова и др., 2006) по изучению влияния климатических условий на массу семян, изучалась зависимость массы семян от состава древостоя и полноты (Дылис, 1961). Одним из наиболее важных факторов, определяющих массу семян, является их полнозернистость, которая также влияет на всхожесть семян и энергию их прорастания.

По нашим данным, амплитуда колебания среднепопуляционных значений массы семян сибирской лиственницы в Предбайкалье и Забайкалье равна 7-9 г и характеризуется средним и повышенным уровнями вариации (CV=16-24%). При этом наблюдается явное увеличение значений признака

при продвижении в юго-западном направлении. Например, в южных районах республики Бурятия масса 1000 семян достигает 8,5 г.

В северных горных районах Монголии, на высотах 1300-1600 м над уровнем моря, масса 1000 семян по средним многолетним наблюдениям не превышает 6,4 г с очень низкой вариацией по годам. По материалам, полученным нами ранее, вариация массы 1000 семян в Восточном Хэнтэе составляет 5,6-8,2 г в зависимости от высоты расположения популяции над уровнем моря.

Кроме того, такие значительные различия объясняются не только особенностями условий произрастания насаждений, но и спецификой формирования семян, обуславливающей разные соотношения полнозернистых и пустых семян. Процент пустых семян в популяциях Восточного Хэнтэя колеблется от 25 до 57,5 %. Причины низкого качества семян лиственницы выделяются различные: от плохих погодных условий в период пыления и низкого качества пыльцы (Третьякава и др., 2006), до фитоценотических условий произрастания популяции (Дылис, 1961). Однако, мы считаем, что недостаточная всхожесть семян из горных популяций Монголии определяется преимущественно нарушениями в развитии зародыша семени. Например, в 1983 году в заповеднике Богдо-Ула был отмечен высокий уровень встречаемости (до 94 %) полиэмбриональных семян. Кроме того, низкое качество семян в горных популяциях связано с недоразвитием зародыша семени. Так, при исследовании горных климатипов лиственницы сибирской в Южной Сибири обнаружен (Ирошников и др., 1974) большой процент (30-60 %) семян, зародыш которых не достигает нормального размера. Недостаточное развитие зародыша в семени резко снижает его жизнеспособность. По утверждению М.А. Щербаковой (1965), семена, в которых зародыш занимает всего 1/4 эмбрионального канала, вообще являются нежизнеспособными и не прорастают.

ЗАКЛЮЧЕНИЕ

Таким образом, анализ полученных результатов показал, что изменчивость морфологических признаков генеративных органов лиственницы сибирской в Восточной Сибири и в горах Монголии, наряду со значительной дифференциацией экологиче-

ских условий произрастания, в некоторой степени обусловлена и гибридизационными процессами с лиственницей Гмелина, происходящими в ряде изученных популяций. В горах Монголии не наблюдается четкой закономерности в изменчивости генеративных органов лиственницы с изменением высоты над уровнем моря. В южных районах Бурятии и в горах Монголии выявлена группа популяций, деревья в которых обладают многочешуйными шишками, причем этот признак относительно не стабилен в пределах популяции, и его внутрипопуляционная изменчивость в некоторых насаждениях достигает повышенного уровня, ПО С.А. Мамаева.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- Барченков, А.П. Изменчивость морфологических признаков генеративных органов лиственницы сибирской в бассейне реки Енисей / А.П. Барченков // Хвойные бореальной зоны 2010. Т. 27.- №1-2. С. 36 42.
- Дылис, Н.В. Сибирская лиственница /Н.В. Дылис. М.: Изд. МОИП, 1947. 137 с.
- Дылис, Н.В. Лиственница Восточной Сибири и Дальнего Востока / Н.В. Дылис. М.: АН СССР, 1961. 209 с.
- Дылис, Н.В. Лиственница /Н.В. Дылис. М.: Лесная промышленность, 1981. 96с.
- Ирошников, А.И. Географическая изменчивость качества семян хвойных пород Сибири / А.И. Ирошников, Л.И. Милютин, В.Л. Черепнин, М.А. Щербакова // Изменчивость древесных растений Сибири. Красноярск: Ин-т леса

- и древесины СО АН СССР, 1974. С. 56-76.
- Круклис, М.В. Лиственница Чекановского / М.В. Круклис, Л.И. Милютин. М.: Наука, 1977. 210 с.
- Кузьмина, Н.А. Географическая изменчивость веса семян лиственницы сибирской в Средней Сибири / Н.А. Кузьмина, В.Л. Черепнин // Лесоведение. 1973. \mathbb{N} 3. С. 35 –39.
- Мамаев, С.А. Формы внутривидовой изменчивости древесных растений / С.А. Мамаев М.: Наука, 1972. 283 с.
- Милютин, Л.И. Взаимоотношения и изменчивость близких видов древесных растений в зонах контакта их ареалов (на примере лиственниц сибирской и даурской). Дисс. докт. биол. наук / Л.И. Милютин. Красноярск, 1983. 418 с.
- Путенихин, В.П. Лиственница Сукачева на Урале: изменчивость и популяционно-генетическая структура / В.П. Путенихин, Г.Г. Фарукшина, 3.Х. Шигапов. М.: Наука, 2004. 276 с.
- Сукачев, В.Н. К истории развития лиственницы / В.Н. Сукачев // Лесное дело. М. Л., 1924, С. 12 44.
- Третьякова, И.Н. Особенности формирования органов лиственницы сибирской и их морфогенетический потенциал / И.Н. Третьякова, Ю.Н. Баранчиков, Л.В. Буглова, А.С. Белоруссова, Л.И. Романова // Успехи современной биологии. 2006. Т. 126. №5. С. 472 480.
- Щербакова, М.А. Определение качества семян хвойных пород рентгенографическим методом / М.А. Щербакова. Красноярск: Красноярское книжн. издат., 1965. 35 с.

Поступила в редакцию 24 ноября 2011 г. Принята к печати 1 марта 2012 г.

20